A role for the Tubby-like protein 1 in rhodopsin transport.
نویسندگان
چکیده
PURPOSE To test the hypothesis that a lack of Tubby-like protein 1 (TULP1) function causes aberrant transport of nascent rhodopsin and to examine the functional relationship between the homologous proteins TULP1 and Tubby by studying mice carrying combined mutations. METHODS Subcellular localization of TULP1 and rhodopsin in photoreceptors was determined by immunofluorescence and by postembedding immunoelectron microscopy. Mice carrying different tulp1/tubby allele combinations were examined by histology, electroretinograms (ERGs), and immunofluorescence microscopy. RESULTS TULP1 is distributed throughout the photoreceptor cytoplasm but is excluded from the outer segments and the nuclei. In the tulp1-/- mice, ectopic accumulation of rhodopsin occurs at an early age. Both the vesicular profiles in the interphotoreceptor space and the inner segment plasma membranes are immunoreactive for rhodopsin. Mice doubly homozygous for null mutations in the tulp1 and tubby genes initially develop photoreceptors and express a battery of photoreceptor markers at age 14 days. Thereafter their photoreceptors undergo a fulminant degeneration that reaches completion by postnatal day 17. The disease phenotype in the double homozygote is much more severe than either single homozygote. Double heterozygotes are phenotypically normal. CONCLUSIONS A lack of TULP1 function results in misrouting of nascent rhodopsin. TULP1 may be a component of the cellular machinery that targets nascent rhodopsin to the outer segments. Comparison of disease phenotypes in the single and double mutants suggests that TULP1 and Tubby are not functionally interchangeable in photoreceptors nor do they form an obligate functional complex.
منابع مشابه
Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins
The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multip...
متن کاملMolecular analyses of the Arabidopsis TUBBY-like protein gene family.
In mammals, TUBBY-like proteins play an important role in maintenance and function of neuronal cells during postdifferentiation and development. We have identified a TUBBY-like protein gene family with 11 members in Arabidopsis, named AtTLP1-11. Although seven of the AtTLP genes are located on chromosome I, no local tandem repeats or gene clusters are identified. Except for AtTLP4, reverse tran...
متن کاملTubby and tubby-like protein 1 are new MerTK ligands for phagocytosis.
Tubby and tubby-like protein 1 (Tulp1) are newly identified phagocytosis ligands to facilitate retinal pigment epithelium (RPE) and macrophage phagocytosis. Both proteins without classical signal peptide have been demonstrated with unconventional secretion. Here, we characterized them as novel MerTK ligands to facilitate phagocytosis. Tulp1 interacts with Tyro3, Axl and MerTK of the TAM recepto...
متن کاملImplication of tubby proteins as transcription factors by structure-based functional analysis.
Tubby-like proteins (TULPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TULPs can result in one or more of three disease phenotypes: obesity (from which the name "tubby" is derived), retinal degeneration, and hearing loss. These disease phenotypes indicate a vital role for tubby proteins; however, no biochemical function has yet been asc...
متن کاملA functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2001